Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38606915

ABSTRACT

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Subject(s)
Carbonic Anhydrases , Hydantoins , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrase I , Carbonic Anhydrase II , Protein Isoforms/metabolism , Phthalimides/pharmacology , Hydantoins/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Molecular Structure
2.
Arch Pharm (Weinheim) ; : e2400038, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498884

ABSTRACT

A novel series of sulfonamide-incorporated bis(α-aminophosphonates) acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. The synthesized bivalent ligands were tested against five human (h) isoforms, hCA I, hCA II, hCA VII, hCA IX, and hCA XIII. Such derivatives showed high activity and selectivity against the cancer-related, membrane-bound isoform hCA IX, and among them, compound 5h, tetraisopropyl (1,3-phenylenebis{[(4-sulfamoylphenyl)amino]methylene})bis(phosphonate) showed a KI of 15.1 nM, being highly selective against this isoform over all other investigated ones (hCA I/IX = 42; hCA II/IX = 6, hCA VII/IX = 3, hCA XIII/IX = 5). Therefore, compound 5h could be a potential lead for the development of selective anticancer agents. The newly developed sulfonamides were also found effective inhibitors against the cytosolic hCA XIII isoform. Compound 5i displayed the best inhibition against this isoform with a KI of 17.2 nM, equal to that of the well-known inhibitor acetazolamide (AAZ), but significantly more selective over all other tested isoforms (hCA I/XIII = 239; hCA II/XIII = 23, hCA VII/XIII = 2, hCA IX/XIII = 3) compared to AAZ.

3.
ChemMedChem ; 19(3): e202300504, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38063319

ABSTRACT

We aimed to design and synthesize 3-methylenechroman-2-one derivatives and test their potency as TrxR1 inhibitors. A convenient and easy-to-handle synthetic approach to 3-methylenechroman-2-ones was developed. The in vitro inhibitory activity towards recombinant TrxR1 was determined for the obtained compounds. The most potent representatives exhibited submicromolar TrxR1 inhibition activity (IC50 varied from 0.29 µM to 10.2 µM). Structure-activity relationship analysis indicates the beneficial role of the substituent at the position C-6 of the core of chroman-2-one, where the derivatives containing halogen are the most active among the scope of compounds obtained. The most potent TrxR1 inhibitor of the series was further examined in in vitro cell-based assays to assess cytotoxic effects on various cancer cell lines, and to evaluate their influence on cell apoptosis.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Thioredoxin-Disulfide Reductase , Antineoplastic Agents/pharmacology , Cell Line , Structure-Activity Relationship
4.
ChemMedChem ; 18(22): e202300454, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37837260

ABSTRACT

This study explores the binding mechanisms of saccharin derivatives with human carbonic anhydrase IX (hCA IX), an antitumor drug target, with the aim of facilitating the design of potent and selective inhibitors. Through the use of crystallographic analysis, we investigate the structures of hCA IX-saccharin derivative complexes, unveiling their unique binding modes that exhibit both similarities to sulfonamides and distinct orientations of the ligand tail. Our comprehensive structural insights provide information regarding the crucial interactions between the ligands and the protein, shedding light on interactions that dictate inhibitor binding and selectivity. Through a comparative analysis of the binding modes observed in hCA II and hCA IX, isoform-specific interactions are identified, offering promising strategies for the development of isoform-selective inhibitors that specifically target tumor-associated hCA IX. The findings of this study significantly deepen our understanding of the binding mechanisms of hCA inhibitors, laying a solid foundation for the rational design of more effective inhibitors.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX/metabolism , Saccharin/pharmacology , Saccharin/chemistry , Carbonic Anhydrases/metabolism , Antigens, Neoplasm/metabolism , Protein Isoforms/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Structure-Activity Relationship , Molecular Structure
5.
Molecules ; 28(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764424

ABSTRACT

Thioredoxin reductase is an essential enzyme that plays a crucial role in maintaining cellular redox homeostasis by catalyzing the reduction of thioredoxin, which is involved in several vital cellular processes. The overexpression of TrxR is often associated with cancer development. A series of 1,2-dithiolane-4-carboxylic acid analogs were obtained to verify the selectivity of 1,2-dithiolane moiety toward TrxR. Asparagusic acid analogs and their bioisoters remain inactive toward TrxR, which proves the inability of the 1,2-dithiolane moiety to serve as a pharmacophore during the interaction with TrxR. It was found that the Michael acceptor functionality-containing analogs exhibit higher inhibitory effects against TrxR compared to other compounds of the series. The most potent representatives exhibited micromolar TrxR1 inhibition activity (IC50 varied from 5.3 to 186.0 µM) and were further examined with in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines and cell death mechanisms.

6.
J Enzyme Inhib Med Chem ; 38(1): 2249267, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37655449

ABSTRACT

A range of 3H-1,2-benzoxaphosphepine 2-oxide aryl derivatives with various substitution patterns at positions 7, 8, or 9 of the scaffold was synthesised in five steps from the commercially available salicylaldehydes. All of the newly obtained compounds were studied for their inhibition potency against carbonic anhydrase (CA) isoforms I, II, IX, and XII. Delightfully, these compounds showed a striking selectivity for the cancer-associated CA IX and XII over the cytosolic CA I and II, whose inhibition may lead to side-effects. Overall, a structure-activity relationship (SAR) revealed that 7- and 8-substituted aryl derivatives were more effective inhibitors of CA IX and XII than 9-substituted derivatives. In addition, the fluorine-containing analogues emerged as the most potent CA IX/XII inhibitors in this series.


Subject(s)
Carbonic Anhydrases , Neoplasms , Carbonic Anhydrase I , Cytosol , Oxides , Protein Isoforms
7.
ACS Med Chem Lett ; 14(8): 1067-1072, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37583824

ABSTRACT

A series of hitherto unknown sulfonamide-incorporated α-aminophosphonate derivatives were synthesized through the one-pot, two-step FeCl3-catalyzed coupling of 4-aminobenzenesulfonamide with the appropriate benzaldehydes and diethyl phosphite. The new sulfonamides inhibition studies were performed on four carbonic anhydrase isoforms, i.e., the cytosolic human (h) hCA I and II (off-targets) as well as transmembrane cancer-related hCA IX and XII (targets). Among the synthesized compounds, derivative 23 resulted in the most selective compound against both cancer-associated isoforms over the off-target hCA I (hCA I/IX = 78; hCA I/XII = 458) and hCA II (hCA II/IX = 10; hCA II/XII = 56) and the binding mode of both enantiomers R and S was investigated in silico.

9.
Bioorg Chem ; 139: 106725, 2023 10.
Article in English | MEDLINE | ID: mdl-37442043

ABSTRACT

A set of novel N-cyano-N-substituted 4-aminobenzenesulfonamide derivatives were synthesized and investigated for their inhibitory activity against four cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, VII and XIII) and two cathepsins (S and B). N-alkyl/benzyl-substituted derivatives were revealed to be very potent inhibitors against brain-associated hCA VII, but inactive against both cathepsins. On the other hand, N-acyl-substituted derivatives displayed significant inhibitory activities against cathepsin S, but only moderate to poor inhibitory potency against hCA VII. Both hCA VII and cathepsin S have recently been validated as therapeutic targets in neuropathic pain. This study provided an excellent starting point for further structural optimization of this class of bifunctional compounds to enhance their inhibitory activity and selectivity against hCA VII and cathepsin S and to achieve new compounds with an attractive dual mechanism of action as anti-neuropathic agents.


Subject(s)
Carbonic Anhydrases , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Cathepsins , Benzenesulfonamides
10.
ChemMedChem ; 18(17): e202300143, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37366073

ABSTRACT

The synthetic approaches towards unique asparagusic acid and its analogues as well as its chemical use, the breadth of its biological properties and their relevant applications have been explored. The significance of the 1,2-dithiolane ring tension in dithiol-mediated uptake and its use for the intracellular transport of molecular cargoes is discussed alongside some of the challenges that arise from the fast thiolate-disulfide interchange. The short overview with the indication of the available literature on natural 1,2-dithiolanes synthesis and biological activities is also included. The general review structure is based on the time-line perspective of the application of asparagusic acid moiety as well as its primitive derivatives (4-amino-1,2-dithiolane-4-carboxylic acid and 4-methyl-1,2-dithiolane-4-carboxilic acid) used in clinics/cosmetics, focusing on the recent research in this area and including international patents applications.


Subject(s)
Carboxylic Acids , Thiophenes , Thiophenes/chemistry , Disulfides/chemistry
11.
Molecules ; 28(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241761

ABSTRACT

A library of structurally diverse N-((4-sulfamoylphenyl)carbamothioyl) amides was synthesized by selective acylation of easily accessible 4-thioureidobenzenesulfonamide with various aliphatic, benzylic, vinylic and aromatic acyl chlorides under mild conditions. Inhibition of three α-class cytosolic human (h) carbonic anhydrases (CAs) (EC 4.2.1.1); that is, hCA I, hCA II and hCA VII and three bacterial ß-CAs from Mycobacterium tuberculosis (MtCA1-MtCA3) with these sulfonamides was thereafter investigated in vitro and in silico. Many of the evaluated compounds displayed better inhibition against hCA I (KI = 13.3-87.6 nM), hCA II (KI = 5.3-384.3 nM), and hCA VII (KI = 1.1-13.5 nM) compared with acetazolamide (AAZ) as the control drug (KI values of 250, 12.5 and 2.5 nM, respectively, against hCA I, hCA II and hCA VII). The mycobacterial enzymes MtCA1 and MtCA2 were also effectively inhibited by these compounds. MtCA3 was, on the other hand, poorly inhibited by the sulfonamides reported here. The most sensitive mycobacterial enzyme to these inhibitors was MtCA2 in which 10 of the 12 evaluated compounds showed KIs (KI, the inhibitor constant) in the low nanomolar range.


Subject(s)
Carbonic Anhydrases , Humans , Carbonic Anhydrases/metabolism , Amides/pharmacology , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Molecular Structure
12.
Future Med Chem ; 15(7): 615-627, 2023 04.
Article in English | MEDLINE | ID: mdl-37140057

ABSTRACT

Aim: Among 15 human (h) carbonic anhydrase (CA; EC 4.2.1.1) isoforms, two (hCA IX and XII) play important roles in the growth and survival of tumor cells, making them therapeutic targets for cancer treatment. This study aimed to develop novel sulfonamide-based compounds as selective hCA IX and XII inhibitors. Materials & methods: A library of novel N-sulfonyl carbamimidothioates was obtained for CA inhibitory activity studies against four hCA isoforms. Results: None of the developed compounds displayed inhibitory potential against off-target isoforms hCA I and II. However, they effectively inhibited tumor-associated hCA IX and XII. Conclusion: The present study suggests potent lead compounds as selective hCA IX and XII inhibitors with anticancer activity.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Antigens, Neoplasm , Molecular Structure
13.
J Med Chem ; 66(8): 5703-5718, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37022308

ABSTRACT

Here, we report for the first time a series of sulfonamide derivatives with scaffolds bearing flexible moieties, namely, rotamers or tropoisomers capable of adapting their geometry in the active center of enzymes thus being effective and selective carbonic anhydrase (CAs, EC 4.2.1.1) enzyme inhibitors. All compounds exhibited effective in vitro inhibition activity toward the main hCA isoforms related to cancer (i.e., hCA II, hCA IX, and hCA XII with KI values in the low nanomolar range). Three selected compounds showed a great cytotoxic effect on cancer cell lines ex vivo. X-ray crystallographic experiments assessed the binding modes of compound 35 with active centers of hCA IX and hCA XII.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Molecular Structure , Antigens, Neoplasm/metabolism
14.
J Enzyme Inhib Med Chem ; 38(1): 2174981, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36762550

ABSTRACT

A small library of substituted cyclic guanidine incorporated benzothiazole-6-sulphonamides was synthesized. All obtained compounds were investigated for their inhibitory activity against the key brain-associated human carbonic anhydrase isoform hCA VII (a promising target for the treatment of neuropathic pain) and three isoforms expressed in brain and other tissues, hCA I, II, and IV. Sulphaguanidine derivatives 9a-d were inactive on the all investigated isoforms while the primary sulphonamide containing guanidines 6a-c and 7a-c were inactive towards hCA IV but displayed inhibiting properties on hCA I, II, and VII with KIs values in the low nanomolar to micromolar ranges. The results indicated that isoforms hCA II and VII were potently and selectively inhibited by these compounds, whereas the cytosolic hCA I was less sensitive to inhibition. The derivatives reported in this study might be useful for design of more potent and selective inhibitors of hCA II and VII.


Subject(s)
Carbonic Anhydrase II , Carbonic Anhydrase Inhibitors , Humans , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Molecular Structure , Protein Isoforms/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacology
15.
ChemMedChem ; 18(6): e202200658, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36691902

ABSTRACT

Two novel sulfaguanidine series, six N-(N,N'-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamide derivatives and nine N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide derivatives, were obtained by desulfidative amination of easily accessible dimethyl arylsulfonylcarbonimidodithioates under catalyst- and base-free conditions. The newly synthesized compounds were tested for the inhibition of four different isozymes of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Both series reported here were inactive against the off-target isozymes hCA I and II (Ki >100 µM). Interestingly, all investigated compounds inhibited both target isozymes hCA IX and XII in the submicromolar to micromolar ranges in which Ki values spanned from 0.168 to 0.921 µM against hCA IX and from 0.335 to 1.451 µM against hCA XII. The results indicated that N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamides were slightly more potent inhibitors than N-(N,N'-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamides. Among the evaluated compounds, N-n-octyl-substituted N-carbamimidoylbenzenesulfonamide showed the most significant activity with a Ki value of 0.168 µM against hCA IX, which was four-fold more selective toward this isozyme versus hCA XII. Again, another derivative from N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide series, N-p-methylbenzyl-substituted N-carbamimidoylbenzenesulfonamide, demonstrated superior inhibitory activity against hCA XII with a Ki value of 0.335 µM.


Subject(s)
Carbonic Anhydrase I , Carbonic Anhydrases , Humans , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase IX/metabolism , Sulfaguanidine , Structure-Activity Relationship , Isoenzymes , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Molecular Structure , Benzenesulfonamides
16.
J Enzyme Inhib Med Chem ; 38(1): 2152811, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629134

ABSTRACT

A library of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates was synthesised by selective S-alkylation of the easily accessible 4-thioureidobenzenesulphonamide. The compounds were assayed as inhibitors of four human (h) carbonic anhydrase isoforms hCA I, II, VII, and XIII, as well as three bacterial enzymes belonging to the ß-CA class, MscCA from Mammaliicoccus (Staphylococcus) sciuri and StCA1 and StCA2, from Salmonella enterica (serovar Typhimurium). Most compounds investigated here exhibited moderate to low nanomolar inhibition constants against hCA I, II, and VII. The cytosolic hCA XIII was also inhibited by these compounds, but not as effective as hCA I, II, and VII. Several compounds were very effective against MscCA and StCA1. StCA2 was less inhibited compared to MscCA and StCA1. Some compounds showed considerable selectivity for inhibiting some CA isoforms. They may thus be considered as interesting starting points for the discovery and development of novel therapeutic agents belonging to this class of enzyme inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Humans , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Carbonic Anhydrase I , Carbonic Anhydrase II , Protein Isoforms , Structure-Activity Relationship , Carbonic Anhydrase IX
17.
J Enzyme Inhib Med Chem ; 38(1): 2163243, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629426

ABSTRACT

A small library of novel thiazolone-benzenesulphonamides has been prepared and evaluated for their ability to inhibit three human cytosolic carbonic anhydrases (hCA I, hCA II, and hCA VII) and three bacterial carbonic anhydrases (MscCAß, StCA1, and StCA2). All investigated hCAs were inhibited by the prepared compounds 4a-4j in the low nanomolar range. These compounds were effective hCA I inhibitors (KIs of 31.5-637.3 nM) and excellent hCA II (KIs in the range of 1.3-13.7 nM) and hCA VII inhibitors (KIs in the range of 0.9-14.6 nM). The most active analog in the series, 4-((4-oxo-5-propyl-4,5-dihydrothiazol-2-yl)amino)benzenesulphonamide 4d, strongly inhibited bacterial MscCAß, with KI of 73.6 nM, considerably better than AAZ (KI of 625 nM). The tested compounds displayed medium inhibitory potency against StCA1 (KIs of 69.2-163.3 nM) when compared to the standard drug (KI of 59 nM). However, StCA2 was poorly inhibited by the sulphonamides reported here, with KIs in the micromolar range between 275.2 and 4875.0 nM.


Subject(s)
Carbonic Anhydrases , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Structure-Activity Relationship , Carbonic Anhydrase IX/metabolism , Molecular Structure , Benzenesulfonamides
18.
J Enzyme Inhib Med Chem ; 38(1): 2155816, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629427

ABSTRACT

Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.


Subject(s)
Anti-Infective Agents , Peptide Nucleic Acids , Bacteria , Anti-Bacterial Agents/pharmacology , Biofilms
19.
J Enzyme Inhib Med Chem ; 38(1): 2170370, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36718988

ABSTRACT

A series of 4-methyl-1,2,3-benzoxathiazine-2,2-dioxides with various substituents in 5, 6 or 7 positions was obtained from corresponding 2'-hydroxyacetophenones in their reaction with sulphamoyl chloride. 6- and 7-aryl substituted 4-methyl-1,2,3-benzoxathiazine-2,2-dioxides were obtained from aryl substituted 2'-hydroxyacetophenonesprepared from 4- or 5-bromo-2'-hydroxyacetophenones via two-step protocol. 4-Methyl-1,2,3-benzoxathiazine-2,2-dioxides were investigated as inhibitors of four human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, off-target cytosolic hCA I and II, and target transmembrane, tumour-associated hCA IX and XII. Twenty derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide were obtained. With one exception (compound2a), they mostly act as nanomolar inhibitors of target hCA IX and XII. Basically, all screened compounds express none or low inhibitory properties towards off-target hCA I. hCA II is inhibited in micromolar range. Overwhelming majority of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxides express excellent selectivity towards CA IX/XII over hCA I as well as very good selectivity towards CA IX/XII over hCA II.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Antigens, Neoplasm , Isoenzymes/metabolism , Molecular Structure
20.
J Enzyme Inhib Med Chem ; 38(1): 225-238, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36373195

ABSTRACT

A series of 1,2,3-benzoxathiazine-2,2-dioxides possessing various substituents in the 5, 7, or 8 position was obtained from corresponding 2-hydroxybenzaldehydes in their reaction with sulfamoyl chloride. 5-, 7-, and 8-aryl substituted 1,2,3-benzoxathiazine-2,2-dioxides were prepared from aryl substituted 2-hydroxybenzaldehydes obtained from 3-, 4-, or 6-bromo-2-hydroxybenzaldehydes via two-step protocol. 1,2,3-Benzoxathiazine-2,2-dioxides were investigated for the inhibition of four human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, cytosolic hCA I and II and tumour-associated transmembrane hCA IX and XII. Twenty four derivatives of 1,2,3-benzoxathiazine 2,2-dioxide were obtained. Most of them act as nanomolar inhibitors of hCA IX and XII. Almost all compounds except 2d and 5a-e also express nanomolar inhibitory activity for hCA II. hCA I is poorly inhibited or not inhibited by 1,2,3-benzoxathiazine 2,2-dioxides. Some of the new derivatives exhibit promising selectivity towards CA IX/XII over hCA I, although none of the compounds are selective towards CA IX/XII over both hCA I and II.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase IX/metabolism , Structure-Activity Relationship , Antigens, Neoplasm , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...